

Recent results from NEMO-3

A search for neutrino-less double beta decay

Karol Lang The University of Texas at Austin

On behalf of the NEMO Collaboration

The ANDES Laboratory First International Workshop for the Design of the ANDES Underground Laboratory Centro Atómico Constituyentes Buenos Aires, Argentina 11-14 April 2011

Outline:

- Context for $0\nu\beta\beta$
 - State of neutrinos
 - Neutrino oscillations
- Practical factors
- NEMO-3 results
- Outlook

"You can observe a lot just by watching." Yogi Bera

In summary...

Neutrino questions

- What is the absolute mass scale?
- □ What is the mass ordering ("mass hierarchy")?
- **u** How strong is the subdominant mixing (angle θ_{13} in the PMNS matrix) ?
- **Do neutrinos violate CP symmetry (angle** δ in the PMNS matrix)?
- □ Are neutrinos Dirac ($v \neq \overline{v}$) or Majorana ($v \equiv \overline{v}$) particles?
- Are there sterile neutrinos?

• …

- What is the absolute mass scale?
- What is the mass ordering ("mass hierarchy")?
- How strong is the subdominant mixing (angle θ_{13} in the PMNS matrix)?
- **Do neutrinos violate CP symmetry (angle** δ in the PMNS matrix)?
- ✓ Are neutrinos Dirac ($v \neq v$) or Majorana ($v \equiv v$) particles?

Are there sterile neutrinos?

- What is the absolute mass scale?
- What is the mass ordering ("mass hierarchy")?
- How strong is the subdominant mixing (angle θ_{13} in the PMNS matrix)?
- **Do neutrinos violate CP symmetry (angle** δ in the PMNS matrix)?
- ✓ Are neutrinos Dirac ($v \neq v$) or Majorana ($v \equiv v$) particles?

Are there sterile neutrinos?

- What is the absolute mass scale?
- What is the mass ordering ("mass hierarchy")?
- How strong is the subdominant mixing (angle θ_{13} in the PMNS matrix)?
- **Do neutrinos violate CP symmetry (angle** δ in the PMNS matrix)?
- ✓ Are neutrinos Dirac ($v \neq v$) or Majorana ($v \equiv v$) particles?

Are there sterile neutrinos?

Why are neutrino masses so small? Answer (?): Majorana mass and the see-saw mechanism

With massive neutrinos, we need to add a right-handed neutrino field

 $L_{m_{\nu}} = m_D \phi \bar{\nu}_R \nu_L + M_R \phi \bar{\nu}_R^c \nu_R^c + m_D \phi \bar{\nu}_L^c \nu_R^c \qquad [\bar{\nu}_L^c]$

$$\begin{bmatrix} \bar{\nu}_L^c, \bar{\nu}_R \end{bmatrix} \begin{bmatrix} 0 & m_D \\ m_D & M_R \end{bmatrix} \begin{bmatrix} \nu_L \\ \nu_R^c \end{bmatrix} + \text{h.c.}$$

$$D_{\nu} = \begin{bmatrix} \frac{m_D^2}{M_R} & 0\\ 0 & M_R \end{bmatrix} \qquad m_1 \simeq \frac{m_D^2}{M_R} \qquad \text{and} \qquad m_2 \simeq M_R$$

$$L_{m_{\nu}} = m_1 \bar{\nu}_1 \nu_1 + M_R \bar{\nu}_2 \nu_2$$

 $u_1 = -i(1-rac{1}{2}
ho^2)(
u_Lu_L^c) + i
ho(
u_R^cu_R)$

$$u_2 =
ho(
u_L + -
u_L^c) + (1 - rac{1}{2}
ho^2)(
u_R +
u_R^c)$$

Neutrino oscillations

Two-detector measurement **MINOS** long baseline (735km) Minn. High intensity beam (120 GeV from Main Injector) $|v(t = 0)\rangle = |v_a\rangle = \cos\theta |v_1\rangle + \sin\theta |v_2\rangle$ **MINOS Near Det** $\begin{pmatrix} v_{\mathbf{a}} \\ v_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$ Enclosure Target evatron Main Inje $P(v_{a} \rightarrow v_{a}) = 1 - \sin^{2}(2\theta) \cdot \sin^{2}\left(\frac{1.27 \cdot L \cdot \Delta m_{21}^{2}}{E}\right)$ P(m) $\overline{\Delta}$ m²=0.003 eV² #FERMILAB #98-1321D 0.0 10 km 10 GeV 735 km 8 9 0 5 2 6

Oscillations of neutrinos versus anti-neutrinos

Phenomenology of $0\nu\beta\beta$ and $2\nu\beta\beta$

- Pairing interaction between nucleons (even-even nuclei more bound than the odd-odd nuclei)
- e.g., ¹³⁶Xe and ¹³⁶Ce are stable against β decay, but unstable against $\beta\beta$ decay ($\beta^{-}\beta^{-}$ for ¹³⁶Xe and $\beta^{+}\beta^{+}$ for ¹³⁶Ce)

(2)

Phenomenology of $0\nu\beta\beta$ and $2\nu\beta\beta$

$$\frac{1}{T_{1/2}^{2\nu}} = G_{2\nu}(Q_{\beta\beta}^{11}, Z) \bullet \left| M_{2\nu}^{GT} \right|^2$$

G = phase space (well known) *M* = nuclear matrix element (challenging)

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q_{\beta\beta}^5, Z) \bullet \left| M_{0\nu}^{GT} \right|^2 \bullet \left\langle m_{\beta\beta} \right\rangle^2$$

$$|\langle m_{\beta\beta} \rangle| = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{i\alpha^*} + m_3|U_{e3}|^2 e^{i\beta^* - 2i\delta}$$

 α^*, β^* = linear combinations of α and β

$$\frac{1}{T_{1/2}^{2\nu}} = G_{2\nu}(Q_{\beta\beta}^{11}, Z) \bullet \left| M_{2\nu}^{GT} \right|^2$$

G = phase space (well known) *M* = nuclear matrix element (challenging)

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q_{\beta\beta}^5, Z) \bullet \left| M_{0\nu}^{GT} \right|^2 \bullet \left\langle m_{\beta\beta} \right\rangle^2$$

$$|\langle m_{\beta\beta} \rangle| = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{i\alpha^*} + m_3|U_{e3}|^2 e^{i\beta^* - 2i\delta}$$

 α^*, β^* = linear combinations of α and β

(2)

"The gauge"

Practical matters

(11) $\beta\beta$ emiters with $Q_{\beta\beta}$ > 2 MeV

Borrowed from:

F. T. Avignone, S. R. Elliott and J. Engel,

``Double Beta Decay, Majorana Neutrinos, and Neutrino Mass," Rev.\ Mod.\ Phys.\ {\bf 80}, 481 (2008) [arXiv:0708.1033 [nucl-ex]].

◆Natural radioactivity and cosmic rays dominate the source of backgrounds → need to go underground + lots of local shielding

²³⁸U and ²³²Th decay chains produce the most troubling gammas (highest energies):

Experimental techniques

Main features: Exquisite energy resolution Modest background rejection

Main features: High background rejection Modest energy resolution

NEMO-3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

The principle: Topology and kinematics

Source: 10 kg of $\beta\beta$ isotopic foils area = 20 m², thickness ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating (9 layers) in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

Calorimeter:

1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: Gamma shield: Neutron shield:

25 Gauss pure iron (d = 18cm) 30 cm Water (ext. wall) 40 cm Wood (top and bottom) (since March 2004: water + boron)

Radio-pure materials and a lot of shielding

+

calorimeter

calorimeter

NEMO-3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopic foils area = 20 m², thickness ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating (9 layers) in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

Calorimeter:

1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: Gamma shield: Neutron shield:

25 Gauss pure iron (d = 18cm) 30 cm Water (ext. wall) 40 cm Wood (top and bottom) (since March 2004: water + boron)

NEMO-3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopic foils area = 20 m², thickness ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating (9 layers) in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: Gamma shield: Neutron shield:

25 Gauss pure iron (d = 18cm) 30 cm Water (ext. wall) 40 cm Wood (top and bottom) (since March 2004: water + boron)

$\beta\beta$ decay isotopes NEMO-3

NEMO-3 detector during installation in 2001

Completed detector

NEMO-3 Opening Day, July 2002

Started taking data 14 February 2003

P

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

3

IN

Laboratoire Souterrain de Modane

Built for Taup experiment (proton decay) in 1981-1982

Radon Trapping Facility

- Radon trapping facility installed in September 2004.
- The trapping time in activated charcoal longer than ²²²Rn half-life of 3.8 days.
- Radon level reduced by almost factor of 10 in the detector by installing radon trapping facility

Adsorption unit @-50°C

Input: A(²²²Rn) 15 Bq/m³

Output: A(²²²Rn) < 15 mBq/m³ !! reduction factor of 1000

$\beta\beta$ events selection in NEMO-3

Typical $\beta\beta 2\nu$ event observed in ¹⁰⁰Mo

NEMO-3 backgrounds

e-

e-

1. Internal background (in addition to a potential $2\nu\beta\beta$ tail)

(due to ²³²Th (²⁰⁸TI) and ²³⁸U (²¹⁴Bi) radio-impurities of the isotopic source foil)

2. External background (if the γ is not detected)

(due to radio-impurities of the detector)

3. Radon (²¹⁴Bi) inside the tracking detector

- deposits on the wire near the $\beta\beta$ foil
- deposits on the surface of the $\beta\beta$ foil

Each bkg is measured using the NEMO-3 data

Signal and background signatures

Cadmium Foil Activity and Hot Spots

Background: control channels

Sum energy spectrum

Angular distribution

End-point energy spectrum

Results of 2νββ measurements Summer 2010

Other physics

	V+A *	Majoron(s) emission (n=spectral index)**			
	T _{1/2} (0vββ) [years]	n=1	n=2	n=3	n=7
¹⁰⁰ Mo	>5.7·10 ²³ λ<1.4·10 ⁻⁶	>2.7·10 ²² g _{ee} <(0.4-1.8)·10 ⁻⁴	>1.7·10 ²²	>1·10 ²²	>7·10 ¹⁹
⁸² Se	>2.4·10 ²³ λ<2.·10 ⁻⁶	>1.5·10 ²² g _{ee} <(0.7-1.9)·10 ⁻⁴	>6·10 ²¹	>3.1·10 ²²	>5·10 ²⁰

* Phase I+Phase II data

Phase I data, R. Arnold et al. Nucl. Phys. A765 (2006) 483

NEMO-3: $\beta\beta$ of ¹⁰⁰Mo to excited states

4 1 1227 keV

NEMO Collaboration / Nuclear Physics A 781 (2007) 209-226

CUORICINO results

Very active experimental program worldwide

NEMO-3 produces unique results \checkmark many best results in $0\nu\beta\beta$ and $2\nu\beta\beta$ ¹⁰⁰Mo (2009): $T_{1/2}^{0\nu\beta\beta} > 1.1 \times 10^{24} \text{ y} (90\% \text{ CL}) < m_{\nu} > < (450 - 930) \text{ meV}$ ⁸²Se (2009): $T_{1/2}^{0\nu\beta\beta} > 3.6 \times 10^{23} \text{ y} (90\% \text{ CL}) < m_{2} > < (900 - 2300) \text{ meV}$

✓ results for 5 other isotopes: ⁴⁸Ca, ⁹⁶Zr, ¹¹⁶Cd, ¹³⁰Te, ¹⁵⁰Nd

✓ results on transitions to excited states, V+A, Majorons, SSD vs HSD, ...

□ Full data set 2003-2011 currently being analyzed

□ Next: SuperNEMO (first module in 2013) sensitivity $T_{1/2}(0v) = (1 - 2) \times 10^{26} y$ (500 kg*y exposure)

 $< m_{\gamma} > \leq 40 - 140 \text{ meV}$ (NME uncertainty QRPA + SM)