EDELWEISS-II Recent results on search for WIMPs

Gilles Gerbier- CEA Saclay/IRFU Andes 1st workshop Buenos Aires 11-14 april 20011

Expérience pour DEtecter Les Wimps En SIte Souterrainn

The EDELWEISS collaboration

Karlsruhe - oct 09

- CEA Saclay (IRFU and IRAMIS)
- CSNSM Orsay (CNRS/IN2P3 + Univ. Paris Sud)
- IPNLyon (CNRS/IN2P3 + Univ. Lyon 1)
- Institut Néel Grenoble (CNRS/INP)
- Karlsruhe Institute of Technology
- JINR Dubna
- Oxford University (joined in 2009)
- Sheffield University (joined in 2010)

Oxford - sep 10

Laboratoire Souterrain de Modane (Fréjus tunnel)

5

The EDELWEISS-II infrastructure

- Cryogenic installation (18 mK) :
 - Reversed geometry cryostat, pulse tubes
 - Remotely controlled
 - Can host up to 40kg of detectors
- Shieldings :
 - Clean room + deradonized air
 - Active muon veto (>98% coverage)
 - 50-cm PE shield
 - 20-cm lead shield

 \Rightarrow γ background reduced by ~3 wrt EDW1 Other items:

- Remotely controlled sources for gamma calibrations + regenerations
- AmBe sources of neutron calibrations
- Detector storage & repair within the clean room
- Radon detector down to few mBq/m³
- He3 neutron detector (thermal neutron monitoring inside shields) sensitivity ~10⁻⁹ n/cm²/s
- Liquid scintillator neutron counter (study of muon induced neutrons)

The EDELWEISS-II infrastructure

Bolometric energy measurement

Energy deposition E_0 in the absorber : $\Delta T = E_0/C$

- Working point @ T ~ 20 mK (for EDW): $C(T) \sim T^3$ (isolating) \Rightarrow sensitivity gain
- Theoretical resolution limited by fluctuations of internal energy in the detector
- Astroparticle/cosmo applications :
- Dark matter, double beta decay, X-ray astro... :
- « impulse » mode (energy measurement)
- CMB, IR, ... : « continuous » mode (power measurement)
- different sensor technologies
- EDW : NTD sensor = thermal phonons
- CDMS : sensitivity to athermal phonons

WIMP search with ID-400g detectors

~ 20 kg.d in 2008 during validation runs of ID detectors (2 detectors)

Physics run Apr 2009 - May 2010 (10 detectors) : ~ 360 kg.d

Published : 2008 + 6 months 2009 = 160 kg.d - PLB 687 (2010) 294–298 [arXiv: 0912.0805]

Final results of the complete run presented here - submited [arXiv:1103.4070]

Data processing and cuts

- Online trigger on heat pulses
 - \square Online threshold : tiny effect for $E_{recoil} > 20 \text{ keV}$
- Two independent processings analysis
 - Careful cross-checks, very similar results
- Optimal filtering of heat and ionization data samples
- Removal of « bad » periods from the measured baselines
 - Require FWHM heat < 2.5 keV, ion_fiducial < 2 keV, ion_guard < 2.5 keV</p>
 - 17% exposure loss (concentrated on a few detectors)
- Quality of pulse reconstruction (chi2 cut) : 2.7% efficiency loss
- Select fiducial volume (160g)
 - Reject coincidences + muon veto ⇒ 427 kg.d

 99.99% gamma rejection + 90% nuclear recoil band selection + <u>set</u> <u>threshold at 20 keV</u>

> ⇒ 384 kg.d «useful» 98.3% efficiency at 20keV

PL B 687 (2010) 294-298 [arXiv:0912.0805]

19

WIMP search : final results

Elastic WIMP scattering limit

21

Inelastic dark matter

 Dark matter modulated signal claimed by DAMA/LIBRA vs. null detection in all the other direct detection experiments

•
$$\chi + m \rightarrow \chi^* + m$$
 ($\delta \sim 100 \text{ keV}$)

$$v_{\min} = \frac{1}{c^2} \sqrt{\frac{1}{2mE_R}} \left(\frac{mE_R}{\mu} + \delta\right)$$

- Heavier targets preferred
- Modulation is enhanced

Constraints on inelastic dark matter

- same data & analysis as in the elastic case
- use $v_{esc} = 544$ km/s (RAVE survey, arXiv:0611671, 2007)
- DAMA allowed region excluded for $M\chi > 90$ GeV (90%CL)

What is the background ? Current status

•	Gamma:	¹³³ Ba calib rejection x observed bulk γ (3x10 ⁻⁵) (18000)	<0.9
•	Beta:	β source rejection x observed surface evts (6x10 ⁻⁵) (5000)	<0.3
•	Neutrons from μ 's:	<pre>µ veto efficiency x observed muons (meas. > 92.8%) (0.008 evts/kgd)</pre>	<0.4
•	Neutrons from rock:	measured neutron flux x Monte Carlo simu MC cross-check with outside strong AmBe sc	<0.1 ource
•	Neutrons from Pb+PE+Cu+structure:		
		measured U limits x Monte Carlo simu	<0.2
•	Other neutrons from w	within the cryostat (cables)	<1.1

SUM < 3.0 for the whole WIMP run

What's next : the FID800 detector

25

Gamma calibrations with FID800 (2010)

Towards 5x10⁻⁹ pb : EDELWEISS-III

Program under way, funded

 Infrastructure : Upgrades of cabling, cryogenics, acquisition and shielding within the current EDW-II setup

Special care with neutrons : additionnal inner PE shield

 <u>Detectors</u>: ~ 40 FID800 bolometers installed beginning 2012 : 26 kg fiducial

 \Rightarrow 3000 kg.d by end 2012

EDELWEISS : summary / prospects

- EDELWEISS-II: final results with ID detectors
 - One year of WIMP search
 - <u>4.4x10⁻⁸ pb sensitivity achieved</u>
 - Backgrounds start to appear

EDELWEISS-III : project going on

- □ New Goal 5x10⁻⁹ pb, 25 kg fiducial
- Improvements wrt backgrounds
 - FID800 design
 - EM interactions : increased redondancy for ionisation and heat measurements
 - Neutrons : internal PE shield
- <u>New FID800 detectors now working at</u> <u>LSM</u>
- Build 40 detectors, upgrade set-up
 2012 = 3000 kg.d
- Then turn towards EURECA...

- Homogeneously distributed in the volume of the cristal

- Real-condition measurement of fiducial cuts efficiencies at low energy in WIMP search conditions (baselines, voltages...)

· Consistency check with neutron calibrations

• Fiducial volume measurement 160g, primarily limited by the guard regions

29

