

Search for neutrinoless double beta decay with a high pressure Xenon TPC

Rafael M. Gutierrez Universidad Antonio Nariño, Bogotá, Colombia **On behalf of the NEXT collaboration**

Buenos Aires, 29-30 Jun 2017

- NEXT
- What: time projection chamber with high-pressure (10-15 bar) ¹³⁶Xe gas
- Why: energy resolution and electron tracks reconstruction
- Where: Laboratorio Subterráneo de Canfranc, LSC, Spain

NEXT Collaboration

- 80 collaborators
- 17 institutions
- 5 countries

NEXT COLLABORATION

Co-Spokespersons: Juan José Gómez-Cadena IFIC-Valencia, España <u>gomez@mail.cern.ch</u>

Dave R. Nygren * *University of Texas Arlington, USA*

NEXT Neutrino Experiment with a Xenon TPC*

Neutrinoless double beta decay, $\beta\beta0v$, with EL&TPC, filled with Xe 91% of ¹³⁶Xe \rightarrow two features of great value:

- excellent energy resolution: <1% FWHM at 2.5 MeV
- charged-particle tracking for the active suppression of background

NEXT COLLABORATION

Co-Spokespersons: Juan José Gómez-Cadena IFIC-Valencia, España <u>gomez@mail.cern.ch</u>

Dave R. Nygren * *University of Texas Arlington, USA*

NEXT Neutrino Experiment with a Xenon TPC*

Neutrinoless double beta decay, $\beta\beta0v$, with EL&TPC, filled with Xe 91% of ¹³⁶Xe \rightarrow two features of great value:

- excellent energy resolution: <1% FWHM at 2.5 MeV
- charged-particle tracking for the active suppression of background

Furthermore: extrapolable to large source masses, important for present and future detectorsNEXT-1Ton ANDES!!

NEXT MOTIVATION

Onext

Discovering Neutrinoless Double-Beta Decay, **ββ0v**:

remains a central focus in contemporary particle physics.

 $\beta\beta0\nu$ is an hypothetical second-order weak process:

 $Z \rightarrow Z + 2 \text{ and } A \rightarrow A$ $2p \rightarrow 2n+2e^{-}$

Is the neutrino its own anti-particle?

Would have profound implications in our understanding of nature!

NEUTRINOLESS DOUBLE BETA DECAY

• ββ2ν:

2 electrons and 2 ν 10^{18} to $10^{21}\,years$

ββ0v (rare and hypothetical):
 2 electrons and 0 v
 1948, ¹²⁴Sn: > 3x10¹⁵ years
 2001, ⁷⁶Ge: > 1.9x10²⁵ years

next

EXPERIMENTAL CHALLENGE of $\beta\beta0\nu$

To eventually detect ββ0v events:

- mass v < 1 eV → high energy resolution
- large life time \rightarrow large isotope masses
- weak signals → high sensitivity
- abundant noise and background →
 shielding and noise rejection

There is not an ideal experiment without conflicting requirements? several experiments with different and compromises between these aspects

ENERGY RESOLUTION: INDISPENSABLE BUT NOT SUFFICIENT

EXPERIMENTAL CHALLENGE of $\beta\beta0\nu$

EXPERIMENTAL CHALLENGE of $\beta\beta0\nu$

 $Q \equiv$ mass difference between the initial and final atoms of a radiative process.

Detectors of $\beta\beta$: measure the energy of the radiation emitted by a source.

 $\rightarrow \beta\beta0v$: kinetic energies of the two released electrons is equal to the Q value: $Q_{\beta\beta}$

The number of signal events N, in particular, can be related to the half-life of the process:

$$T_{1/2}^{0\nu} = \log 2 \ \frac{N_{\rm A}}{W} \ \frac{\varepsilon \ M \ t}{N} \,, \label{eq:T1/2}$$

 N_A : Avogadro constant, W: atomic mass of the $\beta\beta0v$ isotope, ε : signal detection efficiency, M: source mass, t: measuring time N: the number of $\beta\beta0v$ events observed in the experiment.

EXPERIMENTAL CHALLENGE of $\beta\beta0\nu$

next

DEVELOPING NEXT-100

Demonstration prototypes ~1 kg natural Xe at 10-15:

NEXT-DEMO: best energy resolution 1.62% FWHM at 511 keV \rightarrow extrapolates 0.74% FWHM [13]; track reconstruction possible with EL-based application [14]; energy-deposition pattern used for the identification of signal-like and background-like event topologies [15]

NEXT-DBDM: best energy resolution 1% FWHM at 662 keV, extrapolates to 0.5% FWHM; measurement of Q value of 136Xe [12].

IFIC (SOFT)

LSC

14

NEXT- White* (NEW): data for optimization of calibration, reconstruction methods and validation of background model. Currently in commissioning phase: operating with ¹³⁶Xe-depleted xenon since October 2016

NEXT at Canfranc Underground Laboratory, LSC

Main hall

Main entrance

Under the Pyrenees mountain "El Tobazo"

- 1985 to 2010 increased from A 185m² to 1250m² and V 10⁴m³
 850m deep providing 2500 meters water equivalent of shielding from cosmic rays and offers a low background environment
- 214 scientific users from 15 Countries

NEXT at Canfranc Underground Laboratory, LSC

Main hall

Main entrance

Under the Pyrenees mountain "El Tobazo"

1985 to 2010 increased from A 185m² to 1250m² and V 10⁴m³
850m deep providing 2500 meters water equivalent of shielding from cosmic rays and offers a low background environment
214 scientific users from 15 Countries

ANDES.... better conditions?

NEXT-100: compromise between collecting as much light as possible and minimize sensors to reduce cost, technical complexity and radioactivity

Field Cages

NEXT TECHNOLOGY: efficient and elegant for rare events

SOFT: Separated Optimization FuncTions HPGXe: High Pressure Gaseous Xe TPC: Time Projection Chamber

SiPMs and/or PMT are coated with TPB

Gas System

To maintain 100 kg of Xe with 91% of 136Xe at high pressure without leaks, clean and pure:

Valves structure with "buffer", vacuum pump, recuperation, purification, recirculation pump, purity monitoring, equalization, etc.

Simulation and Analysis

NEXT-NEW AND RESULTS: Construction 2015-2016

NEXT-NEW AND RESULTS: Simulation

Topology: numerical reconstruction of a $\beta\beta0\nu$ event trajectory

50-80

⟨eV/cm

Electrons travel on average 15 cm each (a few ns).

More sophisticated algorithms for the discrimination of signal and background are under development

Fiducial volume: excluding a region of 2 cm around the boundaries of the active volume.

Events with energy between 2.4 and 2.5 MeV.

Topology: 30cm continuous trajectory with one blob in each extreme \rightarrow Qbb \approx 2.47MeV

NEXT-NEW AND RESULTS: Background

Energy region around Q value of 136 Xe:

- charged particles elimination efficiency > 99% by fiducial volume
- neutral particles suppressed by distinctive energy-deposition pattern

Below critical energy ~12 MeV in gaseous Xe, electrons dE/dxrelatively constant until they become non-relativistic then, mostly due to the occurrence of strong multiple scattering the particles lose the remaining E in a blob:

- ββ0v two blobs at both ends
- Background one end-of-track blob.

NEXT-NEW AND RESULTS: Background

Detector subsystem	Material	Quantity	²⁰⁸ Tl	²¹⁴ Bi
			(mBq)	(mBq)
Pressure vessel				
Total	Steel 316Ti	1310 kg	< 197	< 603
Energy plane				
PMTs	R11410-10	60 units	11(3)	21(5)
PMT enclosures	Copper CuA1	60×4.3 kg	< 0.36	< 3.1
Enclosure windows	Sapphire	60×0.14 kg	0.34(8)	< 2.6
Tracking plane				
SiPMs	Sense 1 mm^2	107×64 units	< 0.2	< 0.6
Boards	Kapton FPC	107 units	1.11(12)	7.5(5)
Field cage				
Barrel	Polyethylene	128 kg	< 1	< 8
Shaping rings	Copper CuA1	120×3 kg	< 0.5	< 4
Electrode rings	Steel 316Ti	$2 \times 5 \text{ kg}$	< 1.5	< 5
Anode plate	Fused silien	9.5 kg	0.32(4)	2.0(5)
Resistor chain	1-G Ω resistors	240 units	< 0.0026	< 0.02
Shielding				
Inner shield	Copper CuA1	9620 kg	< 13	< 120
Outer shield	Lead	60700 kg	2060(430)	21300(4300)

Table 3. Radioactivity budget of the NEXT-100 detector. The figures in parentheses after the measurements give the 1-sigma uncertainties in the last digits. The upper limits in the activity of most subsystems originate in the 95% CL limits set on the specific activity of the corresponding materials quoted on Table 2. Campaign of material screening and selection: gamma-ray and mass spectroscopy techniques (international assistance).

next

NEXT and all ββΟν experiments, the main source of background: high-energy gammas from decays of ²¹⁴Bi and ²⁰⁸Tl

Muons and neutrinos are the only surviving radiation from the atmosphere and outer space at the depths of the underground laboratories. 25

500

NEXT-NEW AND RESULTS: Sensitivity

 T_{1/2} = 6×10²⁵ yr sensitivity expected in 3 yr (90% CL)

The NEXT-NEW data will provide in the near future a quantitative assessment of this question.

PRESENT GENERATION EXPERIMENTS FOR ββ0ν

PRESENT GENERATION AND FUTURE EXPERIMENTS FOR ββ0ν

COMPARISONS WITH LEADING ββ0ν EXPERIMENTS

NEXT main technique advantages over the competing experiments:

- 1. Excellent energy resolution:~ 0.3% FWHM (Full Width High Medium) intrinsic, 0.5% extrapolated with prototypes
- 2. Topological signature: background rejection factor ~100%

$T^{-1}_{1/2} \propto a \cdot \epsilon \sqrt{M.t/\Delta E.B}$

	Parameter	EXO	KZEN	NEXT
a: isotopic abundance	а	0.8	0.9	0.9
ε: overall efficiency	3	0.34	0.33	0.33
ΔE : resolution	ΔE (FWHM in keV at Q $\beta\beta$)	100	250	18
B: Background rate	B (in counts/(keV · kg · y))	8 × 10 ⁻⁴	2 × 10 ⁻⁴	2 ×10 ⁻⁴
M.t: total exposure	M (total, in kg)	200	330	100

Energy resolution-low energies:

- 5.5% FWHM energy resolution measured with Kr-83 conversion electrons at 41.5 keV \rightarrow 1/ \sqrt{E} extrapolation yields 0.7% FWHM resolution at Q_{ββ}
- Sufficient to separate 29.7 and 33.8 keV Xenon x-rays

Onext

Energy resolution-higher energies

Good energy resolution maintained at higher energies (511 keV from ²²Na) Full spectrum Select ²²Na photo-peak events 300 Photo-peak 400 x-rays 250 Single-escape 300 200 Entries 150 Entries 007 $\mu = 125775.4$ $\sigma = 1309.03$ 100 Compton edge R = 2.45%100 Rbb = 1.12%50 0 0 100000105000110000115000120000125000130000135000140000 40000 60000 80000 100000 120000 140000 0 20000 S2 energy (pes) S2 energy (pes)

Topological reconstruction

- Observe the two stopping electron tracks emitted from common vertex, characteristic of double beta decays
- Powerful handle for single-electron background suppression

Radon-induced backgrounds

- Alpha production rate measured in NEW during normal (hot getter) operations point to very low ²²²Rn-induced backgrounds for NEXT-100
 - < 10⁻⁴ counts / (keV·kg·yr)

Summary and Conclusions

•NEXT is a new-generation experiment for $\beta\beta0\nu$

•NEXT marries TPC and EL in a novel approach: very good energy resolution and tracking for background rejection with relatively low cost and easily scalable for future $\beta\beta0\nu$ generation detection.

•The next decade will provide further experimental results to pin down neutrino properties and all its consequences for modern physics.

• ANDES: right moment for NEXT-1Ton, last generation experiment of $\beta\beta0\nu$ towards the complete determination of the ν

- fast commissioning
- R&D ready and proved

 possible outstanding contribution to modern physics in LA at relatively low cost

Thanks! Gracias!

Backup slides

STANDARD MODEL

Basic constituents of matter

Murayama

Accounts for three of the four fundamental forces

SU(3)xSU(2)xU(1)

Effective Majorana mass

These experiments are sensitive to: the absolute mass scale, the mass hierarchy, and the nature of neutrinos. Radioactive background in Xe. Signal versus background

If
$$T_{1/2} \sim 10^{25} \text{ y}$$

$$N_{etaeta}(Xe^{136}) = \log 2rac{6\cdot 10^{23}\cdot 10^3(g)\cdot 1(y)}{10^{25}\cdot 136} \sim 0.1$$

==> Need 100 kg y for signal

B/S ~ 1

NEUTRINOLESS DOUBLE BETA DECAY, ββ0ν Onext

Developing NEXT-100

DAQ & Electronics

II - The CERN ADC add-in card. PMT readout

Three main components

III - CDTC16 - The dual function add-in card. Tracking and trigger interface

Last Results NEXT-NEW

- Krypton: at 10 Hz, (lifetime in excess of 700µ): resolution 5.9 % extrapolated to 0.767 % at Qbb. improvement with more statistics and better lifetime.
- Krypton lifetime and alphas lifetime are consistent.

- Next steps:
 - a) Running with Na-22 in the axial port, triggering in S1 for 511 keV gammas and then in S2 for 1.275 MeV gammas (June-July 2017).
 - b) Running with Cs-137 (July 2017).
 - c) Co-56 source (starting 1st July 2017).

DETECTING ββ0ν WITH NEXT

- •NEXT: High Pressure Xenon (HPXe) TPC operating in electroluminescent (EL) mode.
- •NEXT-100: 100 kg of Xenon enriched at 90% in Xe-136 (in stock) at a pressure of 15 bar.
- Excellent energy resolution in gas phase:
- $\delta E/E = 5 \times 10^{-3}$ FWHM possible
- Topology available for background rejection