

The Borexino experiment: Past, Present and Future of an Underground Neutrino Detector

5th Int. Workshop for the Design of the ANDES Underground Laboratory

UNSAM - Buenos Aires, June 29th, 2017

Marco Pallavicini

Dipartimento di Fisica - Università di Genova e Istituto Nazionale di Fisica Nucleare (INFN)

5th ANDES Workshop - UNSAM - Buenos Aires

June 29-30, 2017

M. Pallavicini

SOLAR NEUTRINOS

• Nuclear fusion feeds stars

- **pp chain:** dominant in Sun-like main sequence stars
- **CNO cycle:** dominant in more massive stars

INFŃ

• The role of CNO in the Sun is still uncertain (metallicity problem)

R. Raghavan 1937 - 2011

- In the late 80s, thanks to R. Raghavan, a project was started:
 - Detection of sub-MeV solar v to solve the "solar v problem"
 - First attempt: search for inverse beta decay on $B \Rightarrow$ "BOREX"
 - Proved not to be feasible in the space available at Gran Sasso
 - A smaller detector searching for elastic scattering on e⁻ was proposed ⇒ BOREXino
 - Scintillator: low energy threshold, good energy resolution, no direction

• The key problem:

- The scintillator must be (by far) **the most radio-pure thing ever built!**
 - 15 years of R&D to solve it
 - At that time the goals were unprecedented:
 - 10⁻¹⁶ g/g in ²³⁸U and ²³²Th
 - 10⁻¹⁸ g/g in ¹⁴C
 - 10⁻¹⁴ g/g in K_{nat}

TIME LINE

- 1989-1995: R&D and construction of "Counting Test Facility" (CTF)
- 1995: first CTF results. the feasibility of the project is proved.
 - Actually, it was proved that the project was not impossible....
- **1996-1998:** funding agencies in Italy, Germany and USA approve Borexino
 - 1997: construction of the Water Tank
- **2002-2005:** the project is stopped because of a small accident and a big fight triggered by it
- 2006-2007: activities resume and data taking begins on May 15, 2007
- 2007-2017: physics!

Phys. Lett. B422 (1998) Astrop. Phys. 8 (1998) Astrop. Phys. 18 (2002)

5th ANDES Workshop - UNSAM - Buenos Aires

WHY SO LONG ?

- A few numbers:
 - With 100 t of target mass, you expect about **50 ev/day** from ⁷Be solar ν
 - 50 / 86400 / 100 t ∼ **6 10⁻⁹ Bq/kg**
 - v-e scattering is intrinsically not distinguishable from a β radioactivity event or from Compton scattering from γ radioactivity

• BUT:

- Good mineral water: ~
- Air:
- Typical rock

~10 Bq/kg ~10 Bq/m³ ~100-1000 Bq/kg ⁴⁰K, ²³⁸U, ²³²Th ²²²Rn, ³⁹Ar, ⁸⁵Kr ⁴⁰K, ²³⁸U, ²³²Th, + many others

- If you want to detect solar neutrinos with liquid scintillator, you must be 9-10 orders of magnitude more pure than anything on earth
 - Not easy, but possible !

HOW DO YOU MAKE IT ?

• Go deep underground

- Reduce muons (10⁶ @ LNGS) and even more important reduce cosmogenic production of radioactive contaminants
- Introduce the concept of **"graded shielding"**
 - "Onion-like" detector with purer and purer materials going deep inside
- Very carefully **select all materials**

- Ask chemistry to help you, i.e. select a target in which solubility of radioactive ions is low
 - **Organic liquid scintillator** MUCH better than water
- Develop **purification techniques** and, even more important, **measurement technique** to achieve desired purity

M. Pallavicini

THE CONCEPT OF GRADED SHIELDING

June 29-30, 2017

M. Pallavicini

MATERIAL SELECTION AND CLEANLINESS

5th ANDES Workshop - UNSAM - Buenos Aires

June 29-30, 2017

15 YEARS OF WORK IN I SLIDE

Radio-Isotope		Concentration or Flux		Strategy for Reduction		Final	
Name	Source	Typical	Required	Hardware	Software	Achieved	
μ	cosmic	~ 200 s ⁻¹ m ⁻² @ sea level	<10 ⁻¹⁰ s ⁻¹ m ⁻²	underground water detector	Cerenkov PS analysis	< 10 ⁻¹⁰ eff. > 0.9992	
γ	rock			water	fid. vol.	negligible	
γ	PMTs, SSS			buffer	fid. vol.	negligible	
¹⁴ C	intrinsic PC	~10 ⁻¹² g/g	~10 ⁻¹⁸ g/g	selection	threshold	$\sim 2 10^{-18} \text{g/g}$	
238U 232Th	dust, metallic	10 ⁻⁵ -10 ⁻⁶ g/g	<10 ⁻¹⁶ g/g	distillation, W.E., filtration, mat. selection, cleanliness	tagging, α/β	1.6±0.1 10 ⁻¹⁷ g/g 5.1±1 10 ⁻¹⁸ g/g	
⁷ Be	cosmogenic	~3 10 ⁻² Bq/t	<10-6 Bq/t	distillation		not seen	
⁴⁰ K	dust, PPO	~2. 10 ⁻⁶ g/g (dust)	<10 ⁻¹⁸ g/g	distillation,W.E.		not seen	
²¹⁰ Po	surface cont. from ²²² Rn		<1 c/d/t	distillation, W.E., filtration, cleanliness	fit	May '07: 70 c/d/t Jan '10: ~1 c/d/t	
²²² Rn	emanation from materials, rock	10 Bq/l air, water 100-1000 Bq rock	<10 cpd 100 t	N ₂ stripping cleanliness	tagging, α/β	<1 cpd 100 t	
³⁹ Ar	air, cosmogenic	17 mBq/m ³ (air)	< 1 cpd 100 t	N ₂ stripping	fit	<< ⁸⁵ Kr	
⁸⁵ Kr	air, nuclear weapons	~ 1 Bq/m ³ (air)	< 1 cpd 100 t	N ₂ stripping	fit	May 07: 30 ± 5 cpd/100 t NOW: < 3 cpd/100 t	
5th ANDES Workshop - UNSAM - Buenos Aires June 29-30, 2017 M. Pallavicini 9/39							

June 29-30, 2017

M. Pallavicini

10/39

5

THE DETECTOR: INSIDE VIEW

DURING WATER FILLING - 2006

PC AND WATER

June 29-30, 2017

We also all all

M. Pallavicini

photo: BOREXINO calibration

DETECTOR READY FOR DATA

5th ANDES Workshop - UNSAM - Buenos Aires

June 29-30, 2017

M. Pallavicini

counts/cm

500

400

300

200

100

0

-0.4

LIQUID SCINTILLATOR FEATURES

- Scintillation light
 - # of photons \rightarrow **energy**
 - time of flight \rightarrow **position**
 - pulse shape $\rightarrow \alpha/\beta \beta^{+}/\beta^{-}$

5th ANDES Workshop - UNSAM - Buenos Aires

-0.2

June 29-30, 2017

M. Pallavicini

• The large effort made in 1990-2007 paid off

- Detector purity was immediately understood to be better than design goals
- The first detection of ⁷Be neutrinos could be done in ~ 1 month

- The very clean scintillator and the low threshold allows a measurement of ⁸B neutrinos with a threshold of 3 MeV 2009
 - Much lower statistics that Water Cherenkov detectors

	3.0–16.3 MeV	5.0–16.3 MeV
Rate [c/d/100 t]	$0.22{\pm}0.04{\pm}0.01$	$0.13{\pm}0.02{\pm}0.01$
$\Phi_{ m exp}^{ m ES}$ [10 ⁶ cm ⁻² s ⁻¹]	$2.4{\pm}0.4{\pm}0.1$	$2.7{\pm}0.4{\pm}0.2$
$\Phi_{ m exp}^{ m ES}/\Phi_{ m th}^{ m ES}$	$0.88 {\pm} 0.19$	1.08 ± 0.23

- The very high purity and the lack of nuclear reactors in Italy make Borexino an idea location for geo-neutrino detection
 - Main purpose: help understanding radiogenic heat

GEO-NEUTRINOS MEASUREMENT

is almost invisible!

Phys. Lett. B687:299-304 (2010) Phys. Rev. D 92, 031101 (2015)

5th ANDES Workshop - UNSAM - Buenos Aires

- Calibrations done in 2010
 - Key points
 - Precise energy calibration
 - Precise determination of the fiducial volume
 - Strong effort on Monte Carlo simulation

A source inside Borexino

5th ANDES Workshop - UNSAM - Buenos Aires

• Two approaches to control systematic errors due to analysis procedure:

Monte Carlo fit to the spectrum,

Phys. Rev. Lett. 107, 141302, 2011

- Very Consistent results, small difference included in sys. uncertainty
- Rate for 100 t target:
 - 46.0 ± 1.5 (stat) ± 1.5 (sys) c d⁻¹

Source	%
Trigger efficiency and stability	< 0.1
Live time	0,04
Scintillator density	0,05
Fiducial volume	+0.5 -1.3
Fit methods	2
Energy response	2,7
Sacrifice of cuts	0,1
Total	+3.4 -3.6

⁷Be DAY-NIGHT ASYMMETRY

• Lack of day-night asymmetry selects MSW-LMA

Phys. Lett. B707:22-26, 2012

$$A_{dn} = 2\frac{R_N - R_D}{R_N + R_D} =$$

 $= 0.001 \pm 0.012 \pm 0.007$

No asymmetry

5th ANDES Workshop - UNSAM - Buenos Aires

June 29-30, 2017

M. Pallavicini

- We obtained first evidence of **pep neutrinos**
 - Thanks to the very low background and analysis tools developed for ¹¹C rejection
 - Three fold coincidence tagging of ¹¹C events
 - β+ β separation exploiting positronium induced pulse shape distortion
 - Multivariate maximum likelihood test using all availab information

NFN

M. Pallavicini

5th ANDES Workshop - UNSAM - Buenos Aires

NFN

June 29-30, 2017

M. Pallavicini

• Extensive **purification** by means of **water extraction** in loop in 2011

• 238U

- Searching for ²²²Rn events (²¹⁴Bi-²¹⁴Po), ²³⁸U < 1.2 10⁻¹⁹ g/g
- At least a factor 20 better than in Phase 1

• ²³²Th

- Searching for ²²⁰Rn events (²¹²Bi-²¹²Po), ²³²Th < 1.2 10⁻¹⁸ g/g
- At least a factor 10 better than in Phase 1

• ⁸⁵Kr

• Currently **compatible with zero**. It was 35 cpd/100 t

• ²¹⁰Bi

• Reduced down to ~ 25 cpd/100 t. It was ~ 60 cpd/100 t

- They are the most important component, though lowest in energy
- They give directly the Sun's power in real time, allowing a comparison between neutrino luminosity and photon luminosity
 - Stability
 - Other particles i.e. axions or sterile
- They probe neutrino oscillations in vacuum (no MSW)

5th ANDES Workshop - UNSAM - Buenos Aires

June 29-30, 2017

•

FINAL RESULT:2014

- pp detection rate:
 - $144 \pm 13 \text{ (stat)} \pm 10 \text{ (syst)} \text{ cpd/100 t}$

• 8 min for neutrinos, 100-300 ky for photons

• expected: (HM-SSM+LMA-MSW):

• real time check of Sun's power

some interest related to long term

climatology and archeo-climatology

• 131 ± 2 cpd/100 t

• main consequence:

ARTICLE

doi:10.1038/nature13702

Neutrinos from the primary proton-proton fusion process in the Sun

Borexino Collaboration*

In the core of the Sun, energy is released through sequences of nuclear reactions that convert hydrogen into helium. The primary reaction is thought to be the fusion of two protons with the emission of a low-energy neutrino. These so-called *pp* neutrinos constitute nearly the entirety of the solar neutrino flux, vastly outnumbering those emitted in the reactions that follow. Although solar neutrinos from secondary processes have been observed, proving the nuclear origin of the Sun's energy and contributing to the discovery of neutrino oscillations, those from proton-proton fusion have hitherto eluded direct detection. Here we report spectral observations of *pp* neutrinos, demonstrating that about 99 per cent of the Sun 3.84×10^{33} ergs per second, is generated by the proton-proton fusion process.

 R_{R} (p) = v (cpd / 100 t)

June 29-30, 2017

5th ANDES Workshop - UNSAM - Buenos Aires

June 29-30, 2017

- What can we still learn from solar neutrinos ?
 - CNO depends on high-Z catalysers, directly linked to metallicity
 - The most direct way to solve the problem and measure core temperature
 - We try hard, but it is very difficult
- ⁷Be, ⁸B, pep, pp: high precision era ?
 - Precise ⁷Be and ⁸B fluxes may help solve metallicity problem
 - Unlikely for Borexino even with 2017 final release. Theoretical problems as well.
 - ⁷Be shape puts constraints on new physics. We will see how far we can go.
 - Lack or deformation of ⁸B upturn may bring new physics. Difficult for Borexino.
 - With higher precision, pp may check Sun's stability and probe the existence of new particles through luminosity constraints. Borexino will not reach this.
- Solar neutrino detectors are key tools for fundamental v physics

• Sterile neutrinos search, neutrino-less double beta decay coming soon !

SOLAR FLUXES: METALLICITY

	High metallicity	Low metallicity	Old calculations			
Source	Flux [cm ⁻² s ⁻¹] SSM-GS98	Flux [cm ⁻² s ⁻¹] SSM-AGSS09	Flux [cm ⁻² s ⁻¹] SSM-GS98-2004		Relative difference due to metallicity	
рр	5.98(1±0.006)×10 ¹⁰	6.03(1±0.006)×10 ¹⁰	5.94(1±0.01)×1010		ν	% diff
рер	1.44(1±0.012)×10 ⁸	1.47(1±0.012)×10 ⁸	1.40(1±0.02)×10 ⁸		рр	0,8
⁷ Be	5.00(1±0.07)×10 ⁹	4.56(1±0.07)×10 ⁹	4.86(1±0.12)×10 ⁹		рер	2,1
⁸ B	5.58(1±0.13)×10 ⁶	4.59(1±0.13)×10 ⁶	5.79(1±0.23)×106		7 B O	8.8
¹³ N	2.96(1±0.15)×108	2.17(1±0.15)×108	5.71(1±0.36)×108		De	0,0
¹⁵ O	2.23(1±0.16)×10 ⁸	1.56(1±0.16)×108	5.03(1±0.41)×108		⁸ B	17,7
¹⁷ F	5.52(1±0.18)×10 ⁶	3.40(1±0.16)×10 ⁶	5.91(1±0.44)×10 ⁶	a said	¹³ N	26,7
Total CNO: 5.24×10 ⁸ 3.76×10 ⁸ 10.8×10 ⁸			150	30		
Aldo M. Serenelli et al. 2011 ApJ 743 24					17 F	38.4

- Significant progress in last 10 years:
 - CNO flux reduced by new cross section measurement of $14N(p,\gamma)15O$
 - Better accuracy for the $3He(4He,\gamma)7Be$ cross section
 - New opacity calculations
 - New abundance based on 3D models

- MSW-LMA effect is observed, still with relatively large errors
 - Probe of Pee requires higher precision
 - No evidence yet of upturn in ⁸B neutrinos

Precision probe of Pee

Tension between solar and reactor ?

ϑ_{12} dominated by solar data Δm_{12} dominated by KamLAND

5th ANDES Workshop - UNSAM - Buenos Aires

June 29-30, 2017

M. Pallavicini

• Not yet

- ⁷Be and ⁸B central values is right in the middle.....
 - Smaller error is possible in Phase 2 (maybe, 3%) but this is not enough to give more than a hint unless the central value moves a lot
- CNO measurement would work, but it is difficult
 - Disfavouring High Metallicity is possible in Phase 2, if Nature chose Low.
 - For a measurement, see next slides

210Pb

21.4 y

²¹⁰Bi

5 d

210Po

138 d

В

β

CAN WE MEASURE CNO WITH LS?

• What are the problems ?

- ¹¹C: only partially solved
 - SNO+ can do better

• ²¹⁰Bi: the worst background

- Spectrally very similar. Regardless of its value you must know it by other means to extract CNO
- An idea: use ²¹⁰Pb decay chain
- You *must* have a **very stable** detector

M. Pallavicini

CAN BOREXINO MEASURE CNO?

6

- To achieve **temperature stability** we have covered the tank with heat insulating material and with T sensors
 - Temperature are more stable
 - ²¹⁰**Po** is moving less
 - It is not clear whether we will achieve sufficient stability

5th ANDES Workshop - UNSAM - Buenos Aires

June 29-30, 2017

M. Pallavicini

THE NEAR FUTURE: SOX

June 29-30, 2017

- Solar neutrinos have been pivotal to the discovery of ν oscillations
 - Still, a very active field of research
 - Next goals: **precision** low energy neutrino physics and stellar physics
 - Search for new physics in solar neutrino interactions by means of high precision measurements
 - Detection of **CNO neutrinos**
 - Solar v detectors are ideal sterile v hunters
- Solar neutrino detectors important for other science as well
 - Geo-neutrinos, Dark matter search, 0vββ
- For CNO neutrinos, future very large mass noble liquid detectors might be interesting

Gracias