Accelerator for stellar reactions

Gianluca Imbriani

Physics Department of University of Naples Federico II, Italian National Institute of Nuclear Physics (INFN), University of Notre Dame

gianluca.imbriani@unina.it

Galactic chemical evolution

Almost all important events in the Universe have left behind them nuclear clues

Subject of N.A. is the understanding of nuclear processes taking place in astrophysical environments

Element abundances in the solar system

Modern nucleosynthesis calculations incorporate thousands of nuclei, following all possible reaction channels. A number of reactions play a key role, either by controlling both the timescale and associated energy production or by regulating the reaction flow.

Stellar evolution during thermal equilibrium

Some examples

• BBN and H-burning in the Sun and solar neutrinos:

p+p->d+e⁺+v, p(d, γ)³He, d(α , γ)⁶Li, ³He(³He, 2p)⁴He, ³He(α , γ)⁷Be, ⁷Be(p, γ)⁸B and ¹⁴N(p, γ)¹⁵O

• Age of Globular Clusters and C production in AGB:

¹⁴N(p,γ)¹⁵O

• AGB nucleosynthesis – light nuclei abundances:

¹⁴N(p,γ)¹⁵O, ¹⁵N(α,γ)¹⁹F, ¹⁵N(p,γ)¹⁶O, ¹⁵N(p,α)¹²C, ¹⁷O(p,γ)¹⁸F, ¹⁷O(p,α)¹⁴N,
¹⁸O(p,γ)¹⁹F, ¹⁸O(p,α)¹⁵N, ¹⁸O(α,γ)²²Ne, ¹⁸F(α,p)²¹Ne, ¹⁹F(α,p)²²Ne, ²²Ne(p,γ)²³Na,
²³Na(p,γ)²⁴Mg, ²⁴Mg(p,γ)²⁵Al, ²⁵Mg(p,γ)²⁶Al(β⁺)²⁶Mg, ²⁶Mg(p,γ)²⁷Al

• Main neutron sources:

```
<sup>13</sup>C(α,n)<sup>16</sup>O, <sup>22</sup>Ne(α,n)<sup>25</sup>Mg
```

• Explovive CNO burning:

```
<sup>15</sup>O(\alpha,\gamma)<sup>19</sup>Ne, <sup>14</sup>O(\alpha,\gamma)<sup>18</sup>Ne, <sup>18</sup>Ne(\alpha,p)<sup>21</sup>Na
```

• He and advanced burnings:

¹²C(α,γ)¹⁶O, ¹²C(¹²C, p)²³Na, ¹²C(¹²C,α)²⁰Ne, ¹⁶O(α,γ)²⁰Ne

Charged particle reactions in stars

Astrophysical factor and Gamow peak

Problem of extrapolation

Why going underground γ -background

Why going underground n-background

Underground Pb-shielding

			Surface	Surface Underground		
			unshielded	unshielded	shielded (this setup)	
⁴⁰ K	primordial	$1460\mathrm{keV}$	*	2244	15	counts / hour
²¹⁴ Bi	²³⁸ U chain	$1764\mathrm{keV}$	*	1271	13	counts / hour
^{208}Tl	²³² Th chain	$2614\mathrm{keV}$	*	679	15	counts / hour
region $3300 - 6000 \mathrm{keV}$			$3.30(2) \cdot 10^{-1}$	$2.4(4) \cdot 10^{-4}$	$1.9(2) \cdot 10^{-4}$	counts / keV / hour

HPGe fully sorrounded (55°) with 15 cm of Pb

$^{25}Mg(p,\gamma)^{26}AI - HPGe spectra E_R = 190 keV$

$^{25}Mg(p,\gamma)^{26}AI - BGO spectra E_R = 90 \text{ keV}$

the weakest ever directly measured resonance strength

The BGO γ -ray total sum spectrum on the 92 keV ²⁵Mg(p, γ)²⁶Al resonance (E_p = 100 keV).

The shaded area → envinromental background

1.

2.

Thin solid line

- \rightarrow ²⁵Mg(p, γ)²⁶Al simulation varying the primaries branchings.
- Solid red line → total yield fit including background and simulation.

LUNA - experimental set-ups

Voltage Range : 1 - 50 kV Output Current: 1 mA Beam energy spread: 20 eV

Voltage Range : 50 - 400 kV Output Current: 500 µA Beam energy spread: 70 eV

H Costantini¹, A Formicola², G Imbriani^{3,4}, M Junker², C Rolfs⁵ and F Strieder⁵

nuclear astrophysics

H-burning @ LUNA – three important results

- BBN and H-burning in the Sun and solar neutrinos: p+p->d+e⁺+v, p(d,γ)³He, d(α,γ)⁶Li, ³He(³He, 2p)⁴He, ³He(α,γ)⁷Be, ⁷Be(p,γ)⁸B and ¹⁴N(p,γ)¹⁵O
- Age of Globular Clusters and C production in AGB:

¹⁴N(p,γ)¹⁵O

• AGB nucleosynthesis – light nuclei abundances:

 $\frac{{}^{14}N(p,\gamma){}^{15}O}{{}^{15}N(\alpha,\gamma){}^{19}F,\,{}^{15}N(p,\gamma){}^{16}O,\,{}^{15}N(p,\alpha){}^{12}C,\,{}^{17}O(p,\gamma){}^{18}F,\,{}^{17}O(p,\alpha){}^{14}N, } \\ {}^{18}O(p,\gamma){}^{19}F,\,{}^{18}O(p,\alpha){}^{15}N,\,{}^{18}O(\alpha,\gamma){}^{22}Ne,\,{}^{18}F(\alpha,p){}^{21}Ne,\,{}^{19}F(\alpha,p){}^{22}Ne,\,{}^{22}Ne(p,\gamma){}^{23}Na, } \\ {}^{23}Na(p,\gamma){}^{24}Mg,\,{}^{24}Mg(p,\gamma){}^{25}Al,\,{}^{25}Mg(p,\gamma){}^{26}Al(\beta^+){}^{26}Mg,\,{}^{26}Mg(p,\gamma){}^{27}Al }$

• Main neutron sources:

```
<sup>13</sup>C(α,n)<sup>16</sup>O, <sup>22</sup>Ne(α,n)<sup>25</sup>Mg
```

• Explovive CNO burning:

```
<sup>15</sup>O(\alpha,\gamma)<sup>19</sup>Ne, <sup>14</sup>O(\alpha,\gamma)<sup>18</sup>Ne, <sup>18</sup>Ne(\alpha,p)<sup>21</sup>Na
```

• He and advaced burnings:

¹²C(α , γ)¹⁶O, ¹²C(¹²C, p)²³Na, ¹²C(¹²C, α)²⁰Ne, ¹⁶O(α , γ)²⁰Ne

Possible nuclear solution of the Solar neutrino problem (before SNO and Borexino)

The dream of W. Fowler

Dear Professors Corvisiero and Rolfs:

I am writing to you about a historic opportunity of which I first became aware at the recent meeting on Solar Fusion Reactions at the Institute of Nuclear Theory, Washington University. At this meeting, I had the opportunity to see for the first time the results of the LUNA measurements of the important 3He - 3He reaction in a region that covers a significant part of the Gamow energy peak for solar fusion. This was a thrill that I had never believed possible. These measurements signal the most important advance in nuclear astrophysics in three decades.

J. Bahcall

The measurement of ³He(⁴He,g)⁷Be @ LUNA

³He(⁴He,γ)⁷Be measurement @ LUNA 400kV

γ -spectrum of ³He(⁴He, γ)⁷Be @ LUNA

HPGe Detector

Copper Lead

irradiated at E = 148 keV. The spectrum was obtained with a HPGe detector of the LNGS low-level laboratory. The total running time was 6 days and the measured activity about 480 mBq.

³He(⁴He,γ)⁷Be results

 $S(0) = 0.542 \pm 0.011$ (MC fit) ± 0.006 (model)^{+0.019}_{-0.011} (phase shifts) keV b.

¹⁴N(p,γ)¹⁵O @ LUNA400kV

Accelerator Specifications

✓ U = 50 - 400 kV

- \checkmark I \sim 300 μA for proton
- $\checkmark \Delta E_{max}$ = 0.07 keV
- ✓ Energy spread : 72eV

✓ Total uncertainty is \pm 300 eV for E_p=100 ÷ 400keV

¹⁴N(p,γ)¹⁵O: LUNA results

¹⁴N(p,γ)¹⁵O: astrophysical consequences

The age of the oldest Globular Clusters should be <u>increased by about 0.7-1 Gyr</u>. The lower limit to the Age of the Universe is 14 ± 1 Gyr.

In good agreement with the precise determination of WMAP.

With ${}^{14}N(p,\gamma){}^{15}O$ rate = ½ of NACRE agreement between observation and calculation.

CNO v-flux reduced by a factor 2

LUNA measurements 1991-2017

• BBN and H-burning in the Sun and solar neutrinos:

p+p->d+e⁺+v, <u>p(d, γ)³He</u>, <u>d(α , γ)⁶Li</u>, <u>³He(³He, 2p)⁴He</u>, <u>³He(α , γ)⁷Be</u>, ⁷Be(p, γ)⁸B and <u>14N(p, γ)¹⁵O</u>

• Age of Globular Clusters and C production in AGB:

¹⁴N(p,γ)¹⁵O

• AGB nucleosynthesis – light nuclei abundances:

 $\frac{{}^{14}N(p,\gamma){}^{15}O,\,{}^{15}N(\alpha,\gamma){}^{19}F,\,\frac{{}^{15}N(p,\gamma){}^{16}O,\,{}^{15}N(p,\alpha){}^{12}C,\,\frac{{}^{17}O(p,\gamma){}^{18}F,\,\frac{{}^{17}O(p,\alpha){}^{14}N,}{{}^{18}O(p,\gamma){}^{19}F,\,\frac{{}^{18}O(p,\alpha){}^{15}N,\,{}^{18}O(\alpha,\gamma){}^{22}Ne,\,{}^{18}F(\alpha,p){}^{21}Ne,\,{}^{19}F(\alpha,p){}^{22}Ne,\,\frac{{}^{22}Ne(p,\gamma){}^{23}Na,}{{}^{23}Na(p,\gamma){}^{24}Mg,\,{}^{24}Mg(p,\gamma){}^{25}Al,\,\frac{{}^{25}Mg(p,\gamma){}^{26}Al,\,{}^{26}Mg(p,\gamma){}^{27}Al$

• Main neutron sources:

```
<sup>13</sup>C(α,n)<sup>16</sup>O, <sup>22</sup>Ne(α,n)<sup>25</sup>Mg
```

• Explovive CNO burning:

```
<sup>15</sup>O(\alpha,\gamma)<sup>19</sup>Ne, <sup>14</sup>O(\alpha,\gamma)<sup>18</sup>Ne, <sup>18</sup>Ne(\alpha,p)<sup>21</sup>Na
```

• He and advaced burnings:

¹²C(α , γ)¹⁶O, ¹²C(¹²C, p)²³Na, ¹²C(¹²C, α)²⁰Ne, ¹⁶O(α , γ)²⁰Ne

LUNA MV – future setup

- inline Cockcroft Walton accelerator
- TERMINAL VOLTAGE: 0.2 3.5 MV
- Precision of terminal voltage reading: 350 V
- Beam energy reproducibility: 0.01% TV
- Beam energy stability: 0.001% TV / h
- Beam current stability: < 5% / h

• 80 cm thick concrete shielding calculated by GEANT4 & MCNP

•
$$E_n = 5.6 \text{ MeV}, 2 \ 10^3 \text{ n/s}, \text{ isotropic}$$

MCNP:
$$\Phi_n = 1.38 \ 10^{-7} \ n/(cm^2 \ s)$$

GEANT4: $\Phi_n = 3.40 \ 10^{-7} \ n/(cm^2 \ s)$

$$\Phi_{n}(LNGS) = 3 \ 10^{-6} \ n/(cm^{2} \ s)$$

LUNA-MV basic schedule

Action	Date	
Approval of the first HVEE technical design	October 2016	•
Opening of the tendering procedure for LUNA-MV plants	November 2016	
Submission of the Authorization request to «Prefettura dell'Aquila»	December 2016	
Beginning of the clearing works in Hall B	February 2017	
End of the tendering procedure for the new LUNA-MV building	June 2017	ON
Beginning of the construction works in Hall B	September 2017	
End of the tendering procedure for LUNA-MV plants	October 2017	
Beginning of the construction of the plants in the LUNA-MV building	December 2017	
Completion of the new LUNA-MV building and plants	April 2018	
In-house acceptance test for the new LUNA-MV accelerator	May 2018	
LUNA-MV accelerator delivering at LNGS	July 2018	
Conclusion of the commissioning phase	December 2018	
Beginning First Experiment	January 2019	

LUNA future measurements

- BBN and H-burning in the Sun and solar neutrinos: p+p->d+e⁺+v, p(d,γ)³He, d(α,γ)⁶Li, ³He(³He, 2p)⁴He, ³He(α,γ)⁷Be, ⁷Be(p,γ)⁸B and ¹⁴N(p,γ)¹⁵O
- Age of Globular Clusters and C production in AGB:

¹⁴N(p,γ)¹⁵O

• AGB nucleosynthesis – light nuclei abundances:

¹⁴N(p,γ)¹⁵O, ¹⁵N(α,γ)¹⁹F, ¹⁵N(p,γ)¹⁶O, ¹⁵N(p,α)¹²C, ¹⁷O(p,γ)¹⁸F, ¹⁷O(p,α)¹⁴N,
¹⁸O(p,γ)¹⁹F, ¹⁸O(p,α)¹⁵N, ¹⁸O(α,γ)²²Ne, ¹⁸F(α,p)²¹Ne, ¹⁹F(α,p)²²Ne, ²²Ne(p,γ)²³Na,
²³Na(p,γ)²⁴Mg, ²⁴Mg(p,γ)²⁵Al, ²⁵Mg(p,γ)²⁶Al, ²⁶Mg(p,γ)²⁷Al

• Main neutron sources:

 $\frac{13C(\alpha,n)^{16}O, 22Ne(\alpha,n)^{25}Mg}{13C(\alpha,n)^{16}O, 22Ne(\alpha,n)^{25}Mg}$

• Explovive CNO burning:

```
<sup>15</sup>O(\alpha,\gamma)<sup>19</sup>Ne, <sup>14</sup>O(\alpha,\gamma)<sup>18</sup>Ne, <sup>18</sup>Ne(\alpha,p)<sup>21</sup>Na
```

• He and advaced burnings:

 $\frac{{}^{12}C(\alpha,\gamma){}^{16}O,\,{}^{12}C({}^{12}C,\,p){}^{23}Na,\,{}^{12}C({}^{12}C,\alpha){}^{20}Ne,\,{}^{16}O(\alpha,\gamma){}^{20}Ne$

Helium Burning: The Cosmo-Chemistry of Carbon and Oxygen

The "holy Grail"

The step after carbon is being formed in a high temperature density environment: ${}^{12}C(\alpha,\gamma){}^{16}O$ determining the early ${}^{12}C/{}^{16}O$ ratio

Late Stellar Evolution determines Carbon and/or Oxygen phase

Type Ia Supernova central carbon burning of C/O white dwarf

Type II Supernova shock-front nucleosynthesis in C and He shells of presupernova star

R-Matrix Analysis phenomenology, but ... 10 Total Cross Section (barns) 10 10 Reaction Rate Ratio 10⁻¹⁰ 1.510⁻¹² 10⁻¹⁴¹ Present/NACRE 10⁻¹⁶ 1 10⁻¹⁸ Total cross section data only 10⁻²⁰ 0.510⁰ 10^{-1} 10^{0} 10^{1} S-factor (MeV b) Temperature (GK) 10⁻¹ R-matrix (AZURE) based cross section extrapolation on the basis of all existing reaction data through ¹⁶O compound nucleus give 10⁻² 15%-20% uncertainty in reaction rate

10

extrapolation.

0.1

 E_{α} (MeV)

Carbon burning in stars

Conversion of ⁴He into ¹²C and ¹⁶O depending on the ¹²C(α , γ)¹⁶O reaction

¹² $C({}^{12}C, p)^{23}Na$ Q = 2.240 MeV¹² $C({}^{12}C, \alpha)^{20}Ne$ Q = 4.617 MeV¹² $C({}^{12}C, p)^{23}Na$ Q = -2.598 MeV¹⁶ $O({}^{16}O, p)^{31}P$ Q = 7.628 MeV¹⁶ $O({}^{16}O, \alpha)^{28}Si$ Q = 9.594 MeV¹⁶ $O({}^{16}O, \alpha)^{31}S$ Q = 1.499 MeV

¹⁶ $O({}^{12}C, p){}^{27}Al \quad Q = 7.170 \, MeV$ ¹⁶ $O({}^{12}C, \alpha){}^{24}Mg \quad Q = 6.771 \, MeV$ ¹⁶ $O({}^{12}C, \alpha){}^{27}Si \quad Q = -0.424 \, MeV$

Wide range of possible heavy ion reactions at low energies

Carbon burning in stars

Experimental results in γ -ray spectrometry

Spillane et al., PRL 98, 122501 (2007)

Total S-factor

The LUNA COLLABORATION (as of May 2017)

• G.F. Ciani*, L. Csedreki, L. Di Paolo, A. Formicola, I. Kochanek, M. Junker, - INFN LNGS / *GSSI, Italy

•D. Bemmerer, K. Stoeckel, M. Takacs, - HZDR Dresden, Germany

•C. Broggini, A. Caciolli, R. Depalo, R. Menegazzo, D. Piatti - Università di Padova and INFN Padova, Italy

•C. Gustavino - INFN Roma1, Italy

•Z. Elekes, Zs. Fülöp, Gy. Gyurky, T. Szucs -MTA-ATOMKI Debrecen, Hungary

•O. Straniero -INAF Osservatorio Astronomico di Collurania, Teramo, Italy

•F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli -Università di Genova and INFN Genova, Italy

•A. Guglielmetti, -Università di Milano and INFN Milano, Italy

•A. Best, A. Di Leva, G. Imbriani, - Università di Napoli and INFN Napoli, Italy

•G. Gervino - Università di Torino and INFN - Torino, Italy

•M. Aliotta, C. Bruno, T. Chillery, T. Davinson - University of Edinburgh, United Kingdom

•G. D'Erasmo, E.M. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, R. Perrino, L. Schiavulli, A. Valentini, Università di Bari and INEN Bari, Italy

Valentini- Università di Bari and INFN Bari, Italy

open questions & future projects

JUNACJPL(China Jinping Underground Laboratory)CASPARSURF(Sanford Underground Research Facility)

Compact **A**ccelerator **S**ystem for **P**erforming **A**strophysical **R**esearch

Frank Strieder (PI)

Doug Wells Tyler Borgwardt Mark Hanhardt Thomas Kadleczek Joe VanDriel John Harrison Lucas Lindholm

Dan Robertson (TC) Manoel Couder Michael Wiescher Rory Hamilton Zach Meisel Bryant Vande Kolk Coschool Contraction of the second se

Uwe Greife

Sanford Underground Research Facility 4850 L Ross Campus Campus

http://nic2018.lngs.infn.it Laboratori Nazionali del Gran Sasso

