Daya Bay and JUNO Reactor Neutrino Experiments: Results and Prospects (on behalf of the Daya Bay and JUNO Collaborations)

Geoneutrinos at ANDES 3 kt Liquid Scintillator Detector

Bedřich Roskovec Pontificia Universidad Católica de Chile

> Buenos Aires 29/6/2017

Daya Bay&JUNO

Reactor Antineutrino Oscillations

Two modes of oscillations:
$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$
 Medium baseline
 $-\sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{ee}^2 L}{4E}\right)$ Short baseline

Daya Bay Experiment Collaboration

Asia (23)

Beijing Normal Univ., CGNPG, CIAE, Dongguan Univ. Tech., IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiaotong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Xi'an Jiaotong Univ, NUDT, ECUST, Congqing Univ, Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

North America (16)

BNL, Iowa State Univ., Illinois Inst. Tech., LBNL, Princeton, RPI, Siena, UC-Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin-Madison, Univ. of Illinois-Urbana-Champaign, Virginia Tech., William & Mary, Yale

Europe (2)

Charles University, Czech Republic JINR, Dubna, Russia

South America (1)

Catholic University of Chile

Daya Bay Layout

Far Hall 1540 m from Ling Ao I 1910 m from Daya Bay 324 m overburden

> Ling Ao Near Hall 470 m from Ling Ao I 558 m from Ling Ao II 100 m overburden

3 Underground Experimental Halls

Daya Bay Near Hall 363 m from Daya Bay 93 m overburden

Daya Bay Cores

Ling Ao II Cores

17.4 GW_{th} power
 8 operating detectors
 160 t total target mass

- High statistics powerful source, large detectors
- Reduction of systematics Near&Far functionally identical detectors
- Ideal baseline
- Low background

Daya Bay Antineutrino Detector and Muon Tagging System

Antineutrino detector (AD)

- 3 separated regions GdLS, LS, MO
- 192x8" PMT

Automated

• 3 ACUs with radioactive sources and LEDs for weekly energy calibration

Muon tagging system

- ADs submerged in the water pool passive shielding from n and γ; active muon detector
- Inner and outer optically separated regions of the pool - two independent water Cherenkov detectors
- 4-layer resistive plate chamber array

Detection Method - Inverse Beta Decay Coincidence **Prompt signal** Delayed signal Daya Bay Inverse beta decay: $\bar{\nu}_e + p \rightarrow$ $30 \ \mu s \rightsquigarrow n + G \overset{\bullet}{d} \rightarrow G d^* \rightarrow G d + \gamma s$ (8 MeV) 200 μ s \rightsquigarrow $n + H \rightarrow D + \gamma$ (2.22 MeV) Daya Bay+JUNO **BD** selection Daya Bay 10⁵ Daya Bay JUNO Remove flashing PMT events 10⁴ rompt energy (MeV) م ق Prompt energy cut: 0.7 MeV<Ep<12 MeV Delayed energy cut: 6 MeV<Ep<12 MeV = 10³ Coincidence time: 1 µs<dt<200 µs 10² Selection of isolated prompt-delayed pair 10 Veto after tagged muon for the background reduction 10 14 Delayed energy (MeV)

B. Roskovec - PUC

Daya Bay&JUNO

- IBD background at Daya Bay (Mostly common for all LS experiments)
 - Low background experiment with B/S ~2.0% at Far Hall
 - Precise measurement background uncertainties well under control

Daya Bay&JUNO

First Measurement of Fuel Evolution

- Antineutrino flux from ²³⁵U,²³⁸U,²³⁹Pu,²⁴¹Pu fissions not constant over time (²³⁵U->²³⁹Pu)
- Daya Bay is first to measured this evolution
- Constant flux ruled out on more than 10σ
- Equal deficit hypothesis excluded 2.6σ
- ²³⁵U is suspected to cause the discrepancy

Message: Prediction models very likely need revision to be able to explain observations

Phys. Rev. Lett, 118, 251801 (2017)

JUNO Location & Collaboration

Daya Bay&JUNO

- Multipurpose experiment with primary goal to determine neutrino mass hierarchy (MH)
- Using reactor neutrino oscillations on medium baseline
- First experiment to measure two neutrino oscillation modes simultaneously

Keys to Precise Measurement:

JUNO Physics Program

Reactor neutrino oscillations:

- Mass hierarchy determination
- Precise measurement of particular oscillation parameters

2.3%

2.5%

sign unknown

<0.6%

< 0.5%

sign determination

Other physics:

- Supernova (SN) neutrinos
 - 10⁴ events from SN @ 10 kpc
 - Testing SN models
 - Possibility of independent determination of MH

Diffused SN neutrinos

1-4 events per year

Discovery if measured

Geoneutrinos

see next slide

- Solar neutrinos
 - ⁷Be neutrinos detected via elastic
 - scattering
 - **Proton decay**
 - p->K++v

...and more

 Δm_{21}^2

 Δm_{31}^2

Summary of Daya Bay&JUNO

- Daya Bay experiment
 - Provided most precise measurement of sin²2 θ_{13} and $|\Delta m^2_{ee}|$

$$\sin^2 2\theta_{13} = (8.41 \pm 0.27 (\text{stat.}) \pm 0.19 (\text{syst.})) \times 10^{-2}$$

 $|\Delta m_{ee}^2| = (2.50 \pm 0.06 (\text{stat.}) \pm 0.06 (\text{syst.})) \times 10^{-3} \text{ eV}^2$

- Searched for sterile neutrinos itself as well as joined analysis with MINOS
- Measured reactor neutrino properties: Spectrum shape, absolute flux, fuel evolution -> Predictions do not correspond to the data
- Run until 2020 Precision of $sin^22\theta_{13} < 3\%$ by then
- JUNO experiment
 - Start data taking 2020
 - Broad physics program including:
 - Neutrino mass hierarchy determination
 - Reduction of the uncertainty of particular oscillation parameters
 - Measurement of neutrinos from various sources

ANDES 3 kt Liquid Scintillator Detector

B. Roskovec

Geoneutrinos @ ANDES

The Earth Dynamics

Crust - Lower density silicate rock

Upper and lower mantle Solid but viscous silicate rock

Outer core - Molten metal

Inner core - Solid metal

Surface heat flow: (46±3) TW*

Cooling of the interior: ? TW

Heat sources: ? TW

Plate tectonics

*Jaupart et al. (2007)

Geoneutrinos @ ANDES

Heat Sources - Radioactivity

Breakdown of the Heat Balance

Geoneutrino Measurements so far

TNU

Upcoming Experiments

Geoneutrinos @ ANDES

B. Roskovec - PUC

Daya Bay&JUNO

Geoneutrino Measurement at ANDES

Investe beta decay (IBD): Time coincidence prompt signal $\bar{\nu}_e + p \rightarrow e^+ + n$ delayed signal

Only ²³⁸U and ²³²Th geo-v's can be detected

Event rates at ANDES 3 kt liquid scintillator detector

	Events (/year/3 kt)	Comment
Geo-v's	75	41.8 TNU; ε=0.85; 0.73×10 ³² p/kt
Reactor v's	5.5± Daya Bay rate&shape	3.6 TNU (geoneutrinos.org- 2015 database)
Accidentals	20.0±0.2	Number depends on many factors
Fast neutrons	0.50±0.15	$10 \times Jinping \Leftarrow 10 \times higher muon flux$
9Li/ ⁸ He	7.0±2.1	$10 \times Jinping \leftarrow 10 \times higher muon flux$
¹³ C(a,n) ¹⁶ O	3.0±0.9	JUNO-like scintillator

ANDES Preliminary Sensitivity

- For fixed R_{Th/U}~4
 - $\sigma_{geo-v}=5.1\%[4.7\%$ stat. only] in 6 years of data
 - $\sigma_{geo-v}=4.0\%$ in 10 years
- For free R_{Th/U}:

B. Roskovec

• Rule out zero Th flux on $\sim 4\sigma$ in 6 years of data (>5 σ in 10 years)

25

Design: What Matters for Geoneutrinos

- What is needed to perform good geo-v measurement?
 - Low cosmic ray muon flux-> Be underground ANDES
 - Low reactor antineutrino flux -> Be far from reactors ANDES
 - Low radioactivity -> Purified liquid scintillator
 - High statistics -> Large detector (3 kt?) ANDES±
- What does not matter that much
 - No need for superb energy resolution
 - Even ~10%@1 MeV is enough

ANDES

Reactor Neutrino Background

- Daya Bay shown that predictions of the reactor neutrino flux does not match measured data
- Daya Bay has measured the generic antineutrino spectrum
- We use it as the best description of this background we currently have

 $1.59^{+0.43}_{-0.47}$

 $6.6^{+2.1}_{-2.2}$

 $8.1^{+2.5}_{-2.7}$

Constraining Mantle with Several Measurements

Comparison with LowQ/MiddleQ/High! models

Including Future Measurements

Summary of ANDES 3 kt LS Detector

- Geoneutrino physics:
 - ANDES the third deepest underground laboratory Low muon flux
 - The lowest reactor background among continental experiments
 - Measurement in the location with one of the thickest crust (D>60 km)
 - The only detector in a convergent margin tectonic setting, where oceanic plate is subducted beneath continental crust
 - First deep underground laboratory in southern hemisphere
 - Potentially the most precise geo-v measurement
- Propaganda:
 - Opportunity for physicists
 from Latin America

 Investment to the future - LS detectors has demonstrated long lifetime full of interesting results: KamLAND (since 2002), SNO (since 1999), SuperKamiokande (since1996)