DarkSide Dark Matter with Ar

Cristiano Galbiati Princeton University Buenos Aires June 30, 2017

Yann Guardincerri (1983-2017)

(New) Argon Collaboration

Researchers from

DarkSide Ο DEAP Ο ArDM Ο MiniCLEAN Ο

planning to collaborate on future program:

- Ο (DS-50, DEAP-3600, MiniCLEAN, ArDM)
- Ο Argon (operation starting 2021) and SiPM photodetectors
- Ο (mid-2020's)

DS-20K — multi-100-T

Completion of current science and R&D programs by each collaboration

Joint collaboration on DS-20K at LNGS, including Low Radioactivity

Joint collaboration on future multi-hundred-tonne LAr detector, site TBD

Collaboration

- 68 institutes
- 350 researchers
- 12 nations:

Brasil, Canada, China, France, Greece, Italy, Poland, Romania, Spain, Switzerland, UK, USA

Towards global argon collaboration:

An Ambitious Discovery Program

- Complementary to LHC
- Raising the bar: from 1 tonne \times yr \rightarrow 1,000 tonne \times yr
- "Zero Background" necessary for a discovery program
- Two crucial technologies
 - Liquid argon target depleted in the radioactive ³⁹Ar
 - SiPMs replacing cryogenic PMTs

Liquid Argon TPC 153 kg ³⁹Ar-Depleted Underground Argon Target

4 m Diameter 30 Tonnes Liquid Scintillator Neutron Veto

10 m Height 11 m Diameter 1,000 Tonnes Water Cherenkov Muon Veto

Liquid Argon TPC 153 kg ³⁹Ar-Depleted Underground Argon Target

4 m Diameter 30 Tonnes Liquid Scintillator Neutron Veto

10 m Height 11 m Diameter 1,000 Tonnes Water Cherenkov Muon Veto

2015) 12345 510 - $\bullet \bullet$ arXiv UAr Ъ kg 6 9 2

"Zero Background" condition (<0.1 background events) necessary to conduct discovery program

What are the instrumental backgrounds for large scale, high mass dark matter searches?

Minimum Ionizing Events:
Scatters of *pp* solar neutrinos on electrons
Radioactive noble gases (³⁹Ar)

 Nuclear Recoils:
v-induced coherent scattering of atm neutrinos [~1/(100 tonne ×yr)]

Elastic Scatters of pp Solar Neutrinos on Electrons

- 200 events/tonnexyr in ROI
- 200,000 background events @neutrino floor
- Defeated in argon thanks to β/γ rejection better than $1 \div 1.6 \times 10^7$

÷1400 39Ar depletion AAr/UAr

16M ³⁹Ar events 5.5 tonne×yr (UAr)

additional active isotopic depletion higher light yield

16M ³⁹Ar events 1,422 kg×day (@AAr)

Based on what we know today, can a depleted argon experiment be free of any instrumental (other than v-induced recoils) background at the scale of 1000 tonnesxyr?

Yes.

Urania to Aria to LNGS

Aria

Nostra Signora di Bonaria, Cagliari

- Photon Detection Efficiency (PDE): 45% requirement met and surpassed
- Dark Count Rate (DCR): 0.1 Hz/mm² requirement met and surpassed
- Challenge in tiling due to 50 pf/mm² capacity. Signal-to-Noise Ratio (SNR) rapidly decreases with increasing surface. The steps:
 - 2×2 cm² tile: fully demonstrated
 - 3.5×3.5 cm² tile: on the way, success projected on the basis of available data
 - 5×5 cm² tile: in 2017, some R&D necessary to improve SNR due to the increase in capacity

SiPM Status

PDE [%]

DarkSide-20k

- 20-tonnes fiducial dark matter detector start of operations at LNGS within 2021
- 100 tonnexyear search for dark matter free of instrumental background **INFN-NSF** science review: √
 - Yellow Book to LNGS: ✓
 - **INFN-NSF** budget and schedule review: ongoing

20-	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	3
DS-20k																			
ARGO																			

Argo **300-tonnes depleted argon detector** start of operations at LNGS within 2027 100 tonnexyear search for dark matter free of instrumental background precision measurement of solar neutrinos

Energy [MeV]

GAr Input

Why we need more Latin American Astroparticle Physicists?

Pablo Javier Mosteiro y Romero

Alvaro Eugenio Chavarria

Single/double electron

Þ

[ww]

⊳

From simulation: By identification of Bragg peak have achieved 10⁻³ suppression of single electron background, with 50% signal acceptance.

Strongly suppresses γray and single β backgrounds

Radioactive backgrounds

In ROI Source	Raw background rate / kg ⁻¹ y ⁻¹	After discrimination / kg ⁻¹ y ⁻¹				
β-decay (bulk)	< 3.3 x 10 ⁻¹	< 3.7 x 10 ⁻⁹				
β-decay (surface)	< 4.1 x 10 ⁻¹	< 1.2 x 10 ⁻⁸				
β-decay (cosmo.)	< 9.9 x 10 ⁻⁵	< 1.5 x 10 ⁻⁷				
γ-ray (photo-elec.)	< 7.2 x 10 ⁻⁴	< 7.2 x 10 ⁻⁷				
γ-ray (Compton)	< 1.6 x 10 ⁻³	< 4.1 x 10 ⁻⁷				
γ-ray (pair prod.)	< 1.9 x 10 ⁻⁶	< 1.9 x 10 ⁻⁷				
Total	< 7.4 x 10 ⁻¹	< 1.5 x 10 ⁻⁶				

by α/β particle ID and spatial coincidences.

Bulk backgrounds suppressed Also applied multiple scattering cut, limited to 10⁻¹ suppression of nearby scatters.

Why we need more Latin American Astroparticle Physicists?

Ivone Albuquerque

Maximo Ave Pernas

Why we need more Latin American Astroparticle Physicists?

Ana Amélia Machado

Ana Amélia Machado, que coordena o projeto na Unicamp ao lado de Segreto: "Tem de ter uma eficiência de visualização muito grande para poder detectar alguma coisa"

Ettore Segreto

O pesquisador Ettore Segreto, um dos coordenadores do projeto: "O estudo do neutrino poderia explicar essa assimetria entre matéria e antimatéria. Essas são questões muito fundamentais"

The End