

# Low threshold crystal detectors for Dark Matter search

Klaus Eitel





www.kit.edu



WIMP search: status and strategy





WIMP search: status and strategy





WIMP search: status and strategy



























# CDMS SuperCDMS (Ge & Si)



#### Klaus Eitel -- Andes workshop 2017



Cryogenic Rare Event Search with Superconducting Thermometers (at LNGS)

#### CRESST





#### **CRESST-II** results



#### **CRESST-III**



Status quo

m = 250g V = 32x32x40 mm<sup>3</sup>

Phonon threshold:

Light-detector res.:



 $\sigma \approx 5 \text{ eV}$ 



block-shaped target crystal (with TES)



#### **CRESST-III** phase 1



10 x 24g detectors operated for one year ≈ **50 kg-days** (net)

R. Strauss, Direct Dark Matter Detection: Experiment meets Theory, March 6-8, 2017, Munich

#### **CRESST-III phase 2**





Reduction x100 of intrinsic bgd of crystals required! reach 10<sup>-2</sup> cts/(kg.keV.d)

 Growth of CaWO<sub>4</sub> crystals in-house
 All production steps under control
 Improvement x10 already achieved
 Cleaning procedure e.g. by re-crystallization, chemical purification of raw materials

100 x 24g detectors operated for 2 years ≈ **1000 kg-days** (net)

R. Strauss, Direct Dark Matter Detection: Experiment meets Theory, March 6-8, 2017, Munich

#### SuperCDMS @ Soudan (2090mwe)







#### **CDMS lite** @ Soudan



making use of Neganov-Luke effect:

$$E_t = E_r + \frac{1}{3 eV} E_Q \Delta V$$

with V=70V amplification of heat signal  $\sim$ 24  $\rightarrow$  effective lowering the threshold

NL amplification:

- ➢ allows E<sub>thr</sub>≈50eV
- opens window into ~GeV range
- Ioss of PID

needs careful energy calib.





#### SuperCDMS Soudan (2090mwe) → SNOLAB (6010mwe)



#### **EDELWEISS** @ LSM





20

#### **EDELWEISS-III FID800 detectors**







Ø=70mm, h=40 mm 2 GeNTDs heat sensors

Electrodes:

concentric AI rings (2mm spacing) covering all faces XeF<sub>2</sub> surface treatment to ensure low leakage current (<1 fA) between adjacent electrodes

J Low Temp Phys (2014) 176: 182-187

"Performance of the EDW-III experiment for direct dark matter searches" arXiv:1706.01070 (subm. to JINST)

#### **Nuclear recoil calibration + discrimination**



- Clear event-by-event separation
   down to 5 keV energy (nuclear recoils)
- Response to nuclear recoils calibrated down to the analysis threshold for low-mass WIMP searches (1 keV<sub>ee</sub> heat = 2.5 keV nuclear rec.)



# EDELWEISS-III 2014—2015 WIMP search

161 days of physics data with 8 FIDs: ~500 kg.d total



# EDELWEISS-III 2014—2015 WIMP search

161 days of physics data with 24 FIDs: >3000 kg.d total



first measurement of cosmogenic <sup>3</sup>H in Ge





#### Search for light WIMPs → lower threshold, better resolution



#### **EDELWEISS R&D targets:**

 Use High Voltage: Amplification of heat signal to reduce effective threshold 8V -> 100V

 Optimize sensors: Improve energy resolutions on heat (thr) & ionization (ID)
 → σ<sub>heat</sub>=100eV, σ<sub>ion</sub>=100eV

Reduce Heat-only events reduction by 100



- $\rightarrow$  up to 100V working  $\rightarrow$  NL boost 35
- $\rightarrow$  sensitivity to low mass WIMPs (~1GeV/c<sup>2</sup>)
- $\rightarrow$  BUT: no electron/gamma suppression









Klaus Eitel -- Andes workshop 2017



## CDMS with large NL amplification $g_L$



#### Since Y(ER) > Y(NR)ER have larger g<sub>L</sub>



P. Cushman, IDM 2016, Sheffield



#### **CDMS towards single e- detection**



#### **CDMS** towards single e- detection



iZIP detectector with h=1cm & vacuum electrode





Klaus Eitel -- Andes workshop 2017

300

value of <sup>241</sup>Am 13.9 keV peak

200

300

200

100

0 1

50

100

V<sub>applied</sub> [Volts]

#### light DM with m<sub>DM</sub>~MeV—GeV ?





## light DM with m<sub>DM</sub>~MeV—GeV ?





#### Search for light DM with GeMMC



combine EDW Ge technology (KIT) with high resol. MMC's (U HD)



- > DM-e<sup>-</sup> scattering  $\rightarrow$  e<sup>-</sup>/h<sup>+</sup> pairs
- charge drift in high E-field @ 20mK
- amplification of phonon signal
- phonon readout with MMC



best achieved resolution with MMC (maXs20):  $\Delta E_{FWHM}$ =1.6eV

A. Fleischmann et al., *AIP Conference Proceedings*, **1185** (2009) 571

#### Search for light DM with GeMMC





#### Conclusions



low thresh crystal detectors complementary to "standard WIMP" searches by Xe, Ar low mass WIMP search: expect major results within next 2—24 months (CRESST, CDMS-lite, EDW-NL, DAMIC)

stay open-minded about nature of DM:
-> asymmetric DM, light DM, dark sector

AN UNDERGROUND LABORATORY IN THE AGUA NEGRA TUNNEL

approaches towards "single electron detection" A low thresh crystal detectors complementary to beam stop expts many new ideas ( $\rightarrow$  Cosmic Visions workshop etc)

tests at surface/shallow sites, but "final" expts in underground lab  $\sim$ table top  $\rightarrow$  midsize (few m<sup>3</sup>) setup with shielding

not covered here: Ge diodes (GERDA, Majorana, CDEX, TEXONO,...)